Code: IT3T1

II B.Tech - I Semester-Regular/Supplementary Examinations November 2016

DIGITAL SYSTEM DESIGN (INFORMATION TECHNOLOGY)

Duration: 3 hours
Max. Marks: 70
PART - A
Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) Convert the hexadecimal number 68BE to binary and octal.
b) Find the hex sum of $(93)_{16}+(\mathrm{DE})_{16}$.
c) Draw symbol and construct the truth table for NAND gate.
d) Arrange the following as per their operator precedence. NOT, OR, AND, parenthesis.
e) Write the dual of $x^{\prime} y z z^{\prime}+x^{\prime} y^{\prime} z$.
f) Define multiplexer.
g) Define encoder.
h) Define programmable array logic.
i) Draw the block diagram of memory unit.
j) Draw the logic diagram and characteristic equation of RS flip-flop.
k) Draw the 4-bit binary ripple counter.

PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2.

a) Convert the following into Octal.

6 M
i) $(0.503)_{10}$
ii) $(1010101)_{2}$
iii) $(\mathrm{ABCD})_{16}$
b) Represent the decimal number 5,6 in binary form using
i) BCD code ii) Excess-3 code
iii) Gray code iv) 8421 code

10 M
3.
a) Find the complement of the following expressions:
i) $\left(x+y^{\prime}+z\right)\left(x^{\prime}+z^{\prime}\right)(x+y)$
ii) $\left(A B^{\prime}+C\right) D^{\prime}+E$
iii) $x y^{\prime}+x^{\prime} y$.
6 M
b) Simplify the following Boolean function, using threevariable K-map:

10 M
i) $F(x, y, z)=\sum(0,1,5,7)$
ii) $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(1,2,3,6,7)$
4.
a) Explain about the following with logic diagram and truth table
i) Half Adder
ii) Full Adder

8 M
b) Draw the diagram of 4-bit adder and explain its working procedure.

8 M
5.
a) Explain PLA with necessary diagrams.
b) Compare PROM, PLA and PAL.

6 M
6.
a) Explain JK Flip-flop. What is the disadvantage of it and how it can be eliminated?

8 M
b) Draw and explain 4-bit universal shift register. 8 M

