Code: IT3T1

II B.Tech - I Semester–Regular/Supplementary Examinations November 2016

DIGITAL SYSTEM DESIGN (INFORMATION TECHNOLOGY)

Duration: 3 hours Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks

11x 2 = 22 M

1.

- a) Convert the hexadecimal number 68BE to binary and octal.
- b) Find the hex sum of $(93)_{16} + (DE)_{16}$.
- c) Draw symbol and construct the truth table for NAND gate.
- d) Arrange the following as per their operator precedence. NOT, OR, AND, parenthesis.
- e) Write the dual of x'yz' + x'y'z.
- f) Define multiplexer.
- g) Define encoder.
- h) Define programmable array logic.
- i) Draw the block diagram of memory unit.
- j) Draw the logic diagram and characteristic equation of RS flip-flop.
- k) Draw the 4-bit binary ripple counter.

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 M$

2.

a) Convert the following into Octal.

6 M

- i) $(0.503)_{10}$
- ii) (1010101) ₂
- iii) (ABCD)₁₆
- b) Represent the decimal number 5,6 in binary form using

 - i) BCD code ii) Excess-3 code
 - iii) Gray code iv) 8421 code

10 M

3.

a) Find the complement of the following expressions:

$$i) (x+y'+z)(x'+z')(x+y)$$

6 M

b) Simplify the following Boolean function, using threevariable K-map: 10 M

i)
$$F(x,y,z)=\sum (0,1,5,7)$$
 ii) $F(x,y,z)=\sum (1,2,3,6,7)$

ii)
$$F(x,y,z) = \sum_{x} (1,2,3,6,7)$$

4.

- a) Explain about the following with logic diagram and truth table. i) Half Adder ii) Full Adder 8 M
- b) Draw the diagram of 4-bit adder and explain its working 8 M procedure.

5.	
a) Explain PLA with necessary diagrams.	10 M
b) Compare PROM, PLA and PAL.	6 M
6.	

- a) Explain JK Flip-flop. What is the disadvantage of it and how it can be eliminated? 8 M
- b) Draw and explain 4-bit universal shift register. 8 M